A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPx-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II).
نویسندگان
چکیده
A novel SmtB/ArsR family metalloregulator, denoted BxmR, has been identified and characterized from the cyanobacterium Oscillatoria brevis. Genetic and biochemical evidence reveals that BxmR represses the expression of both bxa1, encoding a CPx-ATPase metal transporter, as well as a divergently transcribed operon encoding bxmR and bmtA, a heavy metal sequestering metallothionein. Derepression of the expression of all three genes is mediated by both monovalent (Ag(I) and Cu(I)) and divalent (Zn(II) and Cd(II)) heavy metal ions, a novel property among SmtB/ArsR metal sensors. Electrophoretic gel mobility shift experiments reveal that apoBxmR forms multiple resolvable complexes with oligonucleotides containing a single 12-2-12 inverted repeat derived from one of the two operator/promoter regions with similar apparent affinities. Preincubation with either monovalent or divalent metal ions induces disassembly of both the BxmR-bxa1 and BxmR-bxmR/bmtA operator/promoter complexes. Interestingly, the temporal regulation of expression of bxa1 and bmtA mRNAs is different in O. brevis with bxa1 induced first upon heavy metal treatment, followed by bmtA/bxmR. A dynamic interplay among Bxa1, BmtA, and BxmR is proposed that maintains metal homeostasis in O. brevis by balancing the relative rates of metal storage and efflux of multiple heavy metal ions.
منابع مشابه
A Cu(I)-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile.
ArsR (or ArsR/SmtB) family metalloregulatory homodimeric repressors collectively respond to a wide range of metal ion inducers in regulating homeostasis and resistance of essential and nonessential metal ions in bacteria. BxmR from the cyanobacterium Osciliatoria brevis is the first characterized ArsR protein that senses both Cu (I)/Ag (I) and divalent metals Zn (II)/Cd (II) in cells by regulat...
متن کاملConstruction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments
A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance wa...
متن کاملRole of bound Zn(II) in the CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor.
The Staphylococcus aureus plasmid pI258 cadCA operon encodes a P-type ATPase, CadA, that confers resistance to Cd(II)/Pb(II)/Zn(II). Expression is regulated by CadC, a homodimeric repressor that dissociates from the cad operator/promoter upon binding of Cd(II), Pb(II), or Zn(II). CadC is a member of the ArsR/SmtB family of metalloregulatory proteins. The crystal structure of CadC shows two type...
متن کاملComparative study of the different mechanisms for zinc ion stress sensing in two cyanobacterial strains, Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803
In response to an increased level of Zn(2+), Synechococcus sp. PCC 7942 expresses SmtA, a metallothionein-like metal-chelating protein, while Synechocystis sp. PCC 6803 expresses ZiaA, a transporter of Zn(2+). The gene expression of these proteins is regulated by repressor protein, SmtB and ZiaR, respectively. In spite of contributing to different response systems, both repressor proteins belon...
متن کاملEvolution of metal(loid) binding sites in transcriptional regulators.
Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 17 شماره
صفحات -
تاریخ انتشار 2004